Cryptography

NIST Releases First 3 Finalized Post-Quantum Encryption Standards

Cryptography uses mathematical techniques to transform data and prevent it from being read or tampered with by unauthorized parties. That enables exchanging secure messages even in the presence of adversaries. Cryptography is a continually evolving field that drives research and innovation. The Data Encryption Standard (DES), published by NIST in 1977 as a Federal Information Processing Standard (FIPS), was groundbreaking for its time but would fall far short of the levels of protection needed today.

As our electronic networks grow increasingly open and interconnected, it is crucial to have strong, trusted cryptographic standards and guidelines, algorithms and encryption methods that provide a foundation for e-commerce transactions, mobile device conversations and other exchanges of data. NIST has fostered the development of cryptographic techniques and technology for 50 years through an open process which brings together industry, government, and academia to develop workable approaches to cryptographic protection that enable practical security.

Our work in cryptography has continually evolved to meet the needs of the changing IT landscape. Today, NIST cryptographic solutions are used in commercial applications from tablets and cellphones to ATMs, to secure global eCommcerce, to protect US federal information and even in securing top-secret federal data. NIST looks to the future to make sure we have the right cryptographic tools ready as new technologies are brought from research into operation. For example, NIST is now working on a process to develop new kinds of cryptography to protect our data when quantum computing becomes a reality. At the other end of the spectrum, we are advancing so-called lightweight cryptography to balance security needs for circuits smaller than were dreamed of just a few years ago.

In addition to standardizing and testing cryptographic algorithms used to create virtual locks and keys, NIST also assists in their use. NIST’s validation of strong algorithms and implementations builds confidence in cryptography—increasing its use to protect the privacy and well-being of individuals and businesses.

NIST continues to lead public collaborations for developing modern cryptography, including:

NIST also promotes the use of validated cryptographic modules and provides Federal agencies with a security metric to use in procuring equipment containing validated cryptographic modules through other efforts including: FIPS 140, Cryptographic Programs and Laboratory Accreditation Cryptographic Module Validation Program (CMVP), Cryptographic Algorithm Validation Program (CAVP), and Applied Cryptography at NIST's National Cybersecurity Center of Excellence (NCCoE).